带你学习有用的知识

注册/登录|最近发布|今日推荐

主页 日常百科校园生活教育科学
当前位置:首页 > 科学

最优控制核心理论是什么?

发布时间:2023-05-24 11:32责任编辑:姜小新关键词:心理
  最优控制理论(optimal control theory),是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。
  
最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。
  
例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。
  最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л。С。庞特里亚金1958年提出的极大值原理和美国学者R。贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R。
  E。卡尔曼在60年代初提出和解决的。
为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。
  系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。
  

古典变分法
研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。
  因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。

极大值原理
极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。
  

动态规划
动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。
最优控制理论已被应用于最省燃料控制系统、最小能耗控制系统、线性调节器等。
  

知识推荐

高优知识网——分享有用的生活百科,一起学习优秀的知识。 垃圾信息处理邮箱 tousu446@163.com 网站地图
icp备案号 闽ICP备2023005118号-3 互联网安全管理备案 不良信息举报平台 Copyright 2023 www.gaoyou91.com All Rights Reserved